Aerial LaneNet: Lane Marking Semantic Segmentation in Aerial Imagery using Wavelet-Enhanced Cost-sensitive Symmetric Fully Convolutional Neural Networks
نویسندگان
چکیده
The knowledge about the placement and appearance of lane markings is a prerequisite for the creation of maps with high precision, necessary for autonomous driving, infrastructure monitoring, lane-wise traffic management, and urban planning. Lane markings are one of the important components of such maps. Lane markings convey the rules of roads to drivers. While these rules are learned by humans, an autonomous driving vehicle should be taught to learn them to localize itself. Therefore, accurate and reliable lane marking semantic segmentation in the imagery of roads and highways is needed to achieve such goals. We use airborne imagery which can capture a large area in a short period of time by introducing an aerial lane marking dataset. In this work, we propose a Symmetric Fully Convolutional Neural Network enhanced by Wavelet Transform in order to automatically carry out lane marking segmentation in aerial imagery. Due to a heavily unbalanced problem in terms of number of lane marking pixels compared with background pixels, we use a customized loss function as well as a new type of data augmentation step. We achieve a very high accuracy in pixel-wise localization of lane markings without using 3rd-party information. In this work, we introduce the first high-quality dataset used within our experiments which contains a broad range of situations and classes of lane markings representative of today’s transportation systems. This dataset will be publicly available and hence, it can be used as the benchmark dataset for future algorithms within this domain.
منابع مشابه
Integration of Deep Learning Algorithms and Bilateral Filters with the Purpose of Building Extraction from Mono Optical Aerial Imagery
The problem of extracting the building from mono optical aerial imagery with high spatial resolution is always considered as an important challenge to prepare the maps. The goal of the current research is to take advantage of the semantic segmentation of mono optical aerial imagery to extract the building which is realized based on the combination of deep convolutional neural networks (DCNN) an...
متن کاملProvide a Deep Convolutional Neural Network Optimized with Morphological Filters to Map Trees in Urban Environments Using Aerial Imagery
Today, we cannot ignore the role of trees in the quality of human life, so that the earth is inconceivable for humans without the presence of trees. In addition to their natural role, urban trees are also very important in terms of visual beauty. Aerial imagery using unmanned platforms with very high spatial resolution is available today. Convolutional neural networks based deep learning method...
متن کاملAutomatic Pixelwise Object Labeling for Aerial Imagery Using Stacked U-Nets
Automation of objects labeling in aerial imagery is a computer vision task with numerous practical applications. Fields like energy exploration require an automated method to process a continuous stream of imagery on a daily basis. In this paper we propose a pipeline to tackle this problem using a stack of convolutional neural networks (U-Net architecture) arranged end-to-end. Each network work...
متن کاملFully Convolutional Networks for Dense Semantic Labelling of High-Resolution Aerial Imagery
The trend towards higher resolution remote sensing imagery facilitates a transition from land-use classification to object-level scene understanding. Rather than relying purely on spectral content, appearance-based image features come into play. In this work, deep convolutional neural networks (CNNs) are applied to semantic labelling of high-resolution remote sensing data. Recent advances in fu...
متن کاملApplication of a semantic segmentation convolutional neural network for accurate automatic detection and mapping of solar photovoltaic arrays in aerial imagery
We consider the problem of automatically detecting small-scale solar photovoltaic arrays for behind-the-meter energy resource assessment in high resolution aerial imagery. Such algorithms offer a faster and more cost-effective solution to collecting information on distributed solar photovoltaic (PV) arrays, such as their location, capacity, and generated energy. The surface area of PV arrays, a...
متن کامل